
Bibliofile: Humanizing the UNIX System
Author(s): Earl H. Kinmonth
Source: Computers and the Humanities, Vol. 18, No. 2 (Apr. - Jun., 1984), pp. 71-85
Published by: Springer
Stable URL: http://www.jstor.org/stable/30199998 .

Accessed: 17/02/2015 10:19

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Springer is collaborating with JSTOR to digitize, preserve and extend access to Computers and the
Humanities.

http://www.jstor.org

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=springer
http://www.jstor.org/stable/30199998?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

Computers and the Humanities 18 (1984)
SParadigm Press, Inc.

bibliofile: Humanizing the UNIX System*

Earl H. Kinmonth

UNIX, developed by Bell Laboratories and
widely available at American colleges and uni-
versities,' is generally low cost, provides ex-
tensive text processing software and overall
user-friendliness, and is therefore a particularly
attractive system for humanists. This attrac-
tion is sure to increase with the recent announce-
ment that IBM will be offering UNIX on its
small machines. Nevertheless, there are many
rough spots in this operating system. Its data
base (dbminit) is expensive because of its disk
demands and it provides only the most rudi-
mentary functions.2 Programs developed by the
author to give UNIX a flexible data base fol-
low certain principles of program design and
implementation that imply standards by which
data base and text processing software in gen-
eral may be evaluated.

History of bibliofile
The programs described here evolved out of the
author's desire for an "electronic shoe box" to
store the file cards generated in the course of
indexing a book. Finding no such program avail-
able at the University of California at Davis,
and no administrative interest in acquiring such
a program, I wrote several simple programs

Earl Kinmonth is an associate professor of his-
tory at the University of California, Davis
(UCD). This paper and the programs described
in it have benefitted substantially from the com-
ments ofDr. Kevin Roddy, Department ofRhet-
oric, UCD. Funding for program development
has been provided by the Teaching Resources
Center, the Computer Center, and by the Grad-
uate Research Committee, at UCD.

that have grown into a system which covers all
phases of data manipulation. These have at-
tracted heavy usage at UCD, in both individual
and institutional bibliographic projects rang-
ing from medieval rhetoric to contemporary
Japanese management.3

The bibliofile Record Structure
That aspect which most distinguishes the bib-
liofile system from commercial software is its
open-ended free-format record structure. Each
logical record consists of one or more lines, each
beginning with an indicator of what is in that
line. An empty line separates one logical record
from the next. The individual logical records
look rather like ordinary file cards (See Fig. 1).

Figure 1.

a Kinmonth, Earl H.

v The Self-Made Man in Meiji Japanese Thought:

From Samurai to Salaryman

pub University of California Press

yop 1981

The contents of each record is described in a
file usually called ".keys" (pronounced "dot
keys") although it can have any name the user
wishes.4 Fig. 2 shows a ".keys" designed for the
author's personal bibliographic work.5

71

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

72 EARL H. KINMONTH

Figure 2.

a/aut/author
at/art/article title
r/rev/review
s/ser/serial title
vin/vin/volumes issue, or number
d/date/date of publication
v/vt/volume title
vat/vat/volume author ["By ..."]
tr/trans/translator
ved/ved/volume editor
ed/ed/edition number
vnum/vol/volume number
vols/vols/total number of volumes
col/col/collection title
rcol/rcol/romanized collection title
ced/ced/collection or series editor
plp/plp/place of publication
pub/pub/publisher
yop/yop/year of publication
rep/rep/reprint
p/pp/pages
tp/tp/total pages
loc/loc/location
use/use/usage
memo/memo/memo
xref/xref/cross-reference
su/su/subject

The first two items on each line are the "short
key" and the "long key". The third item is an
explanation. For ease in data entry, the "short
key" and the "long key" are interchangeable,
and may be identical. Keys may be composed
of any alphanumeric combination, and the fol-
lowing data may be separated by an item of
punctuation or any amount of space (blanks or
tabs) that suits the user's fancy or a given ter-
minal. Typing a record into the system is very
similar to typing a file card with a typewriter.

No declaration of field length is needed be-
cause fields are uniquely defined by the key (tag)
and the field separator (a line feed). The only
limit on field length is the amount of buffer
space available, which is determined by hard-
ware, not the program.6 There are no type dec-
larations for input; all data are stored as a
byte-addressable stream of characters in con-
formity with the overall UNIX file philosophy.'
Distinctions between different data types (string,
numeric, chronological, etc.), are made at the
formatting or report-generating stage, not dur-
ing input.

The advantages to this approach include:
- The resulting record is a good analog to

a conventional file card. Even the most
naive user can easily understand what is
going on.

- The records are largely self-documenting
and even a raw dump of the file is intelli-
gible.8 No special codes will lock up a ter-
minal, cause a line printer to go berserk, or
require assembly language translators.9
At most, the only processing required for
printing is to "fold" lines that are too long
for the page.10

- The record structure is compatible with all
UNIX utilities which are basically line
oriented."

- In the absence of complicated linkages the
files are easily transportable, across ma-
chines and accounts.12

- The records are acceptable even to Jac-
quard-principle systems.1'3 The only proced-
ures necessary are to fold the long lines and
to pad all lines to a common length. The
bibliofile formatters kform and kawk
(described below) can rewrite bibliofile rec-
ords for systems requiring fixed-length
fields.

The only disadvantage of this approach is the
space taken by the "keys." In the example
given in Fig. 1, twelve percent of the entry is
accounted for by the "keys" and the following
blank. This is, however, a small price to pay for
clarity, and is only partially avoided by
Jacquard-principle systems. Unless these use
some form of marker for unfilled items, they will
have more wasted space than the bibliofile for-
mat. If a marker is used, it will only be mar-
ginally more effective than the bibliofile format
with one or two character keys.'4

In contrast to such popular systems as
dBASE, which uses fixed length fields and pads
with blanks, bibliofile has no wasted space.
More important, especially in humanistic biblio-
graphic work, when the inevitable five- or six-
line title occurs, bibliofile allocates enough
space for that entry without requiring that all
records be large enough to handle the worst
possible case. Very few data base systems can

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

BIBLIOFILE: HUMANIZING UNIX 73

efficiently cope with records such as the example
in Fig. 3.

Figure 3.

a de GuzmaA, Juan

v Primera parte de la retofica, dividida en catorze combites

de oradores: donde se trata el modo que se deve guardar en

saber seguir un concepto por sus partes, en qualquiera

platica, razonamiento o'sermoo, etc.

plp Alcala'de Henares

yop 1589

There is no arbitrary truncation with bibliofile
nor is there any "bleeding".'5

The bibliofile format is also flexible in terms
of the number of fields (keys) in any one record.
New keys can be added at any time by append-
ing them to the ".keys" or inserting them in it.
Space for the keys is allocated dynamically so
there is really no upper limit on their number.
The order of the keys may be changed at any
time and will automatically result in a reorder-
ing of the records the next time a program using
the keys writes a file.16

In practice this flexibility means that the user
does not need rigidly defined data structure be-
fore beginning input. If an unanticipated cate-
gory appears, a new field is simply added to the
".keys." If a subset is desired, it is generated
by calling the programs with a ".keys" file con-
taining only desired fields.

This flexibility is achieved by an input routine
that compares the first "word" in each incom-
ing line to the identifiers in the ".keys." If the
"word" is an identifier, a pointer to the line is
installed in an array paralleling the keys list.
This table of pointers can be read top to bottom,
bottom to top, or in any order the user specifies.

Creation of Files
Because the bibliofile file structure is so simple,
any UNIX editor will do for data entry. Never-
theless, the system has its own editor, ked,

which shares the syntax and commands of the
UNIX editors ed and ex.

In the design of ked, special attention was
given to ease and accuracy of data entry. Out-
side of the "hard sciences," it is a rare academic
computer project in which data entry does not
cause more headaches and consume more time
and money than the analysis itself. The fewer
mistakes made at entry time, the less work later
and the lower the overall cost and aggravation.

ked allows fields to be typed in random order.
In the example in Fig. 1, "yop" (year of publi-
cation) could have been typed before "a"
(author). If a field is typed twice, the second
occurrence replaces the first; this is the quickest
way to make substantial corrections during
entry. Since retyping a field may be inadvertent,
a warning is generated. Beginning a line with
an unknown identifier produces a vocal (bell)
protest. Leading and trailing blanks are removed
because these are usually the result of sloppy
typing or bouncy keyboards." The user can con-
centrate on the text and not on the screen be-
cause the input routine automatically provides
carriage returns near the right-hand margin.
For the user incapable of remembering keys,
ked will step through them, asking the user to
fill in each item.

All common addressing modes are provided.
Records may be called by absolute numerical
address or a range of numerical addresses. Pat-
terns composed of literal strings and "wild
card" tokens may be used to address records
by context. Numerical and pattern-addressing
requests can be combined. All records matching
or not matching a pattern can be identified.

An extensive set of operators can be applied
both at the record (card) and field (key) level.
These include substitution, deletion, movement,
copying, exchange, numbering, and listing in a
variety of formats. Specified groups of records
can be selected and written to separate files or
to filters (using the UNIX pipe mechanism).'8

Although it is essentially a "line-oriented
editor," ked emulates a "screen editor" in some
respects and it can drive the very powerful
"visual" editor vi allowing the user to have both
ked's record addressing capabilities and the
convenience of a screen editor.

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

74 EARL H. KINMONTH

The syntax for ked operations is the same as
that used, with some extensions, by the UNIX
editors ed and ex. The user can transfer from
ked to the UNIX editors with little effort. Some
commercial software does not even maintain a
consistent command syntax within the same
program let alone over a whole system.19

Complex but frequently used commands may
also be placed in separate files. Once these com-
mands are working properly, they are used from
within ked by a statement such as

so abc

where "abc" is the name of the command file.
This provision may be coupled with a built-in
macro processor to create "natural language"
commands for novice users.

ked both tries to spot potential errors and to
provide easy recovery from actual errors. For
instance, it works on a copy of the file being
edited, not the original. Nothing happens to the
original unless you request that it be replaced
by the edited version. In editing, the last change
made can be "undone" whether it affected one
record or hundreds. If the system crashes, the
original file is untouched, and the copy actually
used by ked, called a "buffer," remains. Unless
there is physical destruction of the disk, input
can be resumed from the point of interruption
as soon as the system returns to operation.20 If
a user makes changes to a file and tries to quit
without saving them, ked provides a warning.

All the features described here are technically
simple, but are missing from many commercial
editors. In fact, ed, the standard UNIX editor,
lacks these elementary capabilities.21

In the size of records that can be handled, ked
goes beyond the UNIX editors. ex, the more
powerful of the UNIX line of editors, can handle
records of roughly 200,000 total characters,
with no one line more than 512 characters. ked
being open-ended, its addressing tables can be
set by the user and the upper limit is set by the
hardware, not the program itself.22 Because the
UNIX system allows programs to request more
core as they execute, there is no good reason for
the size of arrays to be compiled-in parameters,
as they are in most UNIX programs.23

Extremely large individual records may also

be handled through bibliofile by passing the file
through kuso (use source). This program scans
each record for a field (default kuso) that has
been designated as containing the names of
source files. kuso then merges these source files
with the bibliofile file it is reading to produce
a single output file. These source files may be
as large as the available hardware permits. kuso
provides options to control how the merging
takes place and whether the original bibliofile
record appears in the output.

Sorting and Collation
On the level of logical records and individual
fields within records, ked encourages the random
entry of data. In most applications, some type
of ordered output is desired. In bibliofile order-
ing and collation is done by kord, a program
that "drives" the UNIX utility sort, greatly
extending its capabilities and ease of use.24

sort is a good example of a program that is
well based in computer theory, written with
very tight and efficient code, and next to use-
less because real-life data does not come in the
rigidly defined format the program expects. It
is machine- but not application-efficient.25

sort can deal only with lines. Even if records
consisting of more than one line are pasted to-
gether to satisfy sort, it arbitrarily (and
silently!) truncates at 512 characters, a limit
that cannot be raised without rewriting the pro-
gram. The syntax for a sort is messy at best.
The program has no provision for missing data
and little provision for deviating from a simple-
minded a > b or a < b type of collation.

kord extracts a set of lines from bibliofile files,
pastes these together in the form sort expects,
writes the script necessary to cause sort to work
properly, and then rebuilds the input files
according to this sorted index. In the process
it can alter or filter what is passed to sort so
that more complex collation can be performed.

kord commands are given in terms of ".keys."
For example

sl/aut/d
s2/vt/d

gives a dictionary sort (only letters, digits,
blanks are significant) on title within author.

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

BIBLIOFILE: HUMANIZING UNIX 75

Sorting may follow a hierarchy.

sl/autlpub/d
s2/atlvt/d

will sort on author or publisher and on article
title or volume title, whichever is found first in
each specification. Up to eight levels of sorts
(limits imposed by sort) may be specified.

kord has an "e" option to excise English
articles. A "z" option causes empty fields to
collate as "zzzzz" rather than as blanks. A "t"
option converts dates in standard formats (De-
cember 7, 1941; 7 December 1941; or Dec. 7,
1941) into a form (1941:12:07) that will be prop-
erly handled by sort.

The "t" option is more than a convenience.
It encourages the use of natural forms which are
less likely to be typed incorrectly in the first
place and which are easier to read when the data
is being checked for errors: Although the prin-
ciples presented in standard textbooks on data
base management would have one entering dates
such as "411207" or something even more cryp-
tic,26 the principle here is that reducing file size
by coding is usually a false economy because it
increases the time required to clean and correct
the data. What is efficient in machine terms is
not necessarily efficient in human or project
terms.

The quirks of foreign languages can be handled
by providing filters that are called by kord.
To get rid of French articles so that a title sort
will work properly, one creates a script for the
UNIX editor.27 This filter might look like Fig.
4.28

Figure i.

ex $1 <<x

g/%Le /s//ll

g/%Les /s//%/

g/%La 1/s///

g/SUn /s//%/

g/%Une /s//%/

g/%L'/s//I/

wq

x

Assuming this script has been given the name
"filterl," from within kord, the user merely
gives the command

a!filterl %

After kord makes its index, it gives this to
"filterl" which strips the French articles.29 The
rewritten index goes to sort which does its usual
literal ASCII collation, but that works now be-
cause the articles have been stripped and these
items will no longer collate under "L" or "U."
Since only the index is changed, nothing is lost
from the original data.

kord illustrates another principle of the bib-
liofile system. Commonly used functions (time,
article stripping, "z" collation) are built in. Other
functions are supported by having an easy
mechanism for calling other programs and
scripts to supplement the main program. For-
tunately, this mechanism is part of the UNIX
operating system. From within a C program,
the function call

system ("string")
causes the commands in "string" to be executed
as though they were entered from the terminal.
At completion, control returns to the calling
program.

All bibliofile programs designed for interac-
tive use have provision for calling other pro-
grams either to perform filter operations or to
initiate collateral processes. Most bibliofile pro-
grams may also be piped: the output from one
program is passed to the input of another, or
to another UNIX facility. Complex sequences
of individual programs and their commands may
be assembled into scripts. These collections of
commands may then be executed by entering
the name of the file containing the commands.

Selection
One of the most appropriate uses for a data
handling system such as bibliofile is to main-
tain special research bibliographies, slide collec-
tions, reprint files, etc. In this use, the major
concern is to rapidly extract subsets from the
main file or files. In bibliofile this is done with

krep, an analog to the UNIX grep series of
pattern finders.

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

76 EARL H. KINMONTH

krep searches can find patterns as prefixes,
suffixes, or included portions of larger patterns
or as "words" (patterns bounded by space, punc-
tuation, or beginning and ends of lines). Patterns
may have single- or multi-character "wild-
cards" and closure (zero or more instances of an
element). Alphanumeric range searches are easily
specified. All of these operators can be com-
bined with full boolean logic using parentheses
to force grouping.

The command syntax is based on that used
by ked and all UNIX pattern matching pro-
grams. Two examples, one simple and one com-
plex, indicate the range of possibilities.

/Japan/

will find any records having Japan, Japanese,
Japanology, etc., anywhere in the record.

/#plp&Tokyo&#y op 193[5-9]/

will find any records indicating place of publi-
cation (plp field) as Tokyo and year of publica-
tion as any year between 1935 and 1939.

This command syntax may appear cryptic,
and to a degree it is. It is, however, shared with
a large number of other UNIX programs (the
operator to select specific fields is a bibliofile
extension) and in practice proves to be more
congenial than something like

find "place of publication" is "Tokyo"
and "year of publication" is "1935-9"

or even

find "plp" is "Tokyo"
and "yop" is "1935-9"

What is easy to understand at first glance is
often extremely tedious over the long run and
error-prone (because more characters must be
typed). Since bibliofile need not be demon-
strated in a showroom by untrained (to say
nothing of incompetent) salesmen, I have been
able to program for the serious and repetitive
user.

The krep logic is optimized so that no un-
necessary scanning is required. That is, a failure
in a sequence of patterns connected by "and"
(&) will stop scanning for that sequence. Similar-

ly, the first success in a sequence connected by
"or" (I) also stops the scanning process. By put-
ting the most restrictive (least likely) pattern
first in an "and" sequence or the least restric-
tive (most likely) pattern first in an "or" se-
quence, the user can substantially reduce the
cost of searching long records.

Nevertheless, even with optimization, the
linear sweeps of krep can be wasteful. Provision
is thus made for restricting a search to the first
n, last n, or m-to-n percent of a file. Given a file
sorted by name and a search for works by
"Smith," limiting the search to the last half of
the file (go50% is the command) will cut costs
while retaining the benefits of a linear sweep.

The first version of kord provided another
alternative to simple linear sweeps: the index
used for sorting (typically much smaller than
the actual file) could be searched with the pro-
gram retrieving the original records automati-
cally. The difference in cost and waiting time
between linear sweeps and indexed searches was
so small, especially in the context of overall
project cost, that no users found it worthwhile
to sacrifice the ability to examine all fields of
a record in order to get somewhat faster
response.

In the following examples of actual krep
(linear) and kord (indexed) searches, the test file
for these timings was made by repeated copy-
ing of a small bibliography used for testing.30
The resulting file had 157 copies of each record
spaced evenly throughout the file for a total of
4082 records. The overall attributes of this file
are shown in Fig. 5.

Figure 5.

493451 characters in file
28103 lines in file

98 longest line
20 average line

4082 records in file
227 largest record (chars)

11 largest record (lines)
6 average record (lines)

120 average record (chars)
963 blocks (512 chars)

These parameters are roughly what one can
expect from standard English language works
in an unannotated bibliography.3'

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

BIBLIOFILE: HUMANIZING UNIX 77

Figure 6.

krep kord
linear indexed

Pattern Billed Real Billed Real
Kinmonth 26.8 32 11.6 21
Kinmonth:Tillich 36.3 71 24.4 37

(a) Timings are in seconds and reflect prime-time loading conditions.
(b) The indexing phase in kord required 58 seconds billed and 90
seconds real time.
(c) The machine used was a PDP 11/70.
(d) There were 157 records matching "Kinmonth" and 314 matching
"Tillich." The time to write these to the output file is included in
the chart.

Given the relatively small differentials be-
tween indexed and linear searches and the
relatively high cost of creating an index, there
is very little incentive for giving up the infinite
flexibility of the whole-record scan for the highly
restrictive indexed method. The linear sweep
would be inappropriate for an airline flight res-
ervation system or for putting a whole library
system on line. For any file an individual scholar
is likely to generate, it is, however, more usable
than systems that sacrifice flexibility in the
name of machine efficiency. Indeed, after a year
of trial, the indexed search function was removed
from kord because it was not being used.32

Generally, my experience has been the human-
istic users are more interested in flexibility than
speed, especially since bibliofile, even on a
heavily loaded UNIX system, can retrieve data
faster than can most highly restrictive data
bases running on single-user microcomputers.

While ignoring the indexed-search provisions
of kord, both institutional and humanistic users
requested facilities for merging and joining
records. kord provides three distinct operations
for joining two or more separate records that
share one or more common data fields into a
single unit.

(a) Appending join. If the information in a
given field of a second or subsequent card is
different from that in the same field on the first
card, the resulting card has

key data from 1; data from 2; data from nth

(o) Overlay join. Data from second and subse-
quent cards replaces that on earlier cards to
yield

key data from nth

Figure 7.

XXX VIII Bibliography
La Tradition manuscrite des romans de Chritien de Troyes. Vol.

2e tirage: Publications romanes et franqais, 90. Gendve: Droz,
1966.

Morawski, Joseph. Proverbes fJanqais ant'rieurs au X"Ve siecle. CFMA, 47.
Paris: Champion, 1925.

Neumann, Fritz. Zur Laut- und Flexionslehre des Altfranz6sischen. Heil-
bronn: Henninger, 1878.

Nitze, Fritz. "The Character of Gauvain in the Romances of Chretien de
Troyes." MP, 50 (1953), 219-25.

Nyrop, K. R. Grammaire historique de la langue franqaise. 6 vol. 2nd ed.
Paris: Picard, 1925-36.

Omont, H. Catalogue g'nb'ral des manuscrits ftanqais de la Bibliotheque
Nationale. vol. 17. Paris: Leroux, 1900.

P[aris], G[aston]. "Gauvain et Hunbaut," in Histoire littbraire de la France.
vol 30. Paris: Imprimerie Nationale, 1888.

Perlesvaus. Le Haut Livre du Graal: Perlesvaus. Edited by William A. Nitze
and T. Atkinson Jenkins. 2 vol. The Modern Philology Mono-
graphs of the University of Chicago. Chicago: University of Chi-
cago Press, 1932-37.

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

78 EARL H. KINMONTH

(s) Supplementary join. Blank fields in earlier
cards are supplemented by data from later cards
which produces

key data from 1

if the first card in a sequence has data for a
given key, otherwise

key data from nth

This join capability allows the merging of inde-
pendently created data sets. It has been used
to solve a peculiar problem in medieval bibliog-
raphy by merging completely separate number-
author and number-title lists into a single, far
more usable bibliography that can be easily
sorted, indexed, and cross-referenced.

Formatting and Printing
For many purposes a simple raw dump of
bibliofile cards is quite usable. More elaborately
formatted output can be prepared with any of
the UNIX editors. Also suited to this purpose
are sed, the stream editor, and awk, the report
generator. bibliofile does have its own formatter,
something of a cross between awk and sed.33
That is, it combines pattern matching and
substitution functions with full boolean logic
phrased in terms of keys as identifiers and a
limited mathematics capability. When used to
drive nroff or troff (the UNIX word processing
programs), this program (kform) can deliver
camera ready copy.

kform is programmed in a language similar
to that used by nroff and troff.34 The language
has both primitive elements and complex
routines found useful in bibliographic work.
Fig. 8 shows a simple program that makes an
author-title list. It replaces repeated authors
by "----" and inserts appropriate nroff-

Figure 8.

.if .no aut II .no vt .th .sk .fi

.if .ep $O,aut .th .pw ".BRSn----------.,n"

.el .pw ".BRnts,%n" aut .fi

.sv $O,aut

.pw "SBsSR.Sn" vt

troff instructions for paragraph indentation
and boldface type.

Translated this program says:

If there is no author or no volume title, then
skip this card.
If there are equal patterns in $0 (previous
author) and author, then print and write the
nroff-troff macro (BR) for a bibliographic
entry followed by "-----,"
If the patterns are not equal (else case of if-
then-else), then print and write the nroff-troff
macro BR, a linefeed, and the author's name(s)
followed by a comma.
Save the current author in register $0 for
comparison with the next author.
Print and write the volume title preceded by
the nroff-troff instructions for bold type. Ter-
minate the string with a period and the nroff-
troff instructions to return to Roman font.

Despite its cryptic commands, kform has
proved relatively easy to use because, unlike
awk and sed, it is interactive and has full, plain
English diagnostics. If the second line in the
program had errors, one would get from kform
the output shown in Fig. 9.

Figure 9.

.if .es $O,aut .th .pw ".BRSn----------,Sn" ----- I
<unknown function>

.if .ep $O,aut .th .pw ".BRSn----------,Sn

<s--------------tring not terinated> <string not terminated>

Errors not detected at execution time halt the
program with a diagnostic that tells which line
in the source program contained the error.

During its compilation phase, awk would say
"bailing out near line 2," not the most useful
debugging aid. Errors during execution simply
abort awk with a core dump that is, for all prac-
tical purposes, useless. For all its error check-
ing kform runs faster than awk.35

While writing scripts for kform, one can get
a list of commands and their syntax simply by
typing "??". Several comprehensive examples
are provided in the printed documentation, and

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

BIBLIOFILE: HUMANIZING UNIX 79

many users have been able to cannibalize or
modify these for their own purposes. Because
kform is interactive, one can test a script one
line at a time until the desired results are ob-
tained. Thus, even with the arcane commands,
it is possible to develop a working program
somewhat more rapidly with kform than with
batch-style sed or awk.

Eventually, kform will be replaced by a C
language interpreter geared to the bibliofile
system. The initial version of this interpreter
provides the following features of the C lan-
guage: integer and string variables; for, while
and if-else control-flow statements; standard
arithmetic operators (addition, subtraction,
multiplication, division, modulus); and all of the
string manipulation functions provided as part
of the standard C library.

Using this program, tentatively called kawk,
the formatting task above is written as in
Fig. 10.

Figure 10.

char prevaut[5121;

while(rdcard())

if($aut && $vt)

if(strcmp(prevaut,$aut) == 0)

printf(".BRn---------,-n");

else

printf(".BRnSs,$n",$aut);

strcpy(prevaut,$aut);

printf("%SBSns.5n",$vt);

With the exception of the '$' operator to access
data fields from bibliofile records and exten-
sions to the C format specifications, kawk is a
well-behaved, interactive subset of the C lan-
guage with the practical advantage that student
assistants drawn from computer science courses
of a university using UNIX should already be
familiar with it. Similarly, the researcher who
wants to learn programming will find the highly
interactive kawk much easier to experiment
with than the more powerful (but much slower

C compiler) and much more specific in its
diagnostics than awk (which is also a variation
on C).

Learning to Use the System
Programs that emphasize efficient use of com-
puter resources may actually be more expensive
in the long run if mechanical efficiency leads to
programs that are hard for people to use. For
the casual user of a given computer program,
the cost of familiarization may well exceed the
cost of execution. Thus no special effort has
been made to tune bibliofile programs for ab-
solute machine efficiency. Instead, once pro-
grams are doing what they were intended to do,
primary effort has gone into minimizing the
learning time and making the inevitable trial-
and-error stage reasonably painless and brief.

As far as possible, the command structure of
the programs is the same as that for the UNIX
analog or a logical extension of the analog's
commands. In the few instances where a depar-
ture was made from UNIX practice, either the
bibliofile program was written to recognize
more than one form of the same command or
instructions on conversion have been supplied
in the documentation. Deviations from UNIX
patterns have been introduced only when those
patterns clearly and consistently invited errors.
The basic assumption here is that consistency,
even with commands that are more awkward
than efficient parsing requires, is preferable to
introducing variations that must be memorized
or continually checked against documentation.

Although the UNIX system is inherently
interactive, few of the utilities take advantage
of this feature. Most are essentially batch-style
programs that might just as well have been
written in the 1950s. Effectively used, however,
interaction minimizes the learning time even
without recourse to menus. If the program
catches errors and gives a reasonably clear in-
dication of what is wrong, the user can learn
largely by experimenting with output directed
to the terminal, adding and changing param-
eters in response to program output and diag-
nostic messages. Once the parameters seem to
be yielding the proper results, the output can
be switched from the terminal to a file or to a

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

80 EARL H. KINMONTH

printer. After switching the output, the only
instruction that need be repeated is the run
command, usually a "go."

Oddly, some otherwise thoughtful program-
mers, including those associated with the
development of UNIX, seem to regard diagnos-
tics as something of an electronic VD: a sign
that you have strayed from the straight and
narrow and are getting your just reward when
a program aborts without warning or destroys
your data and hours of work. The original
UNIX editor ed allowed one to overwrite files
without warning. You could quit without hav-
ing saved your work. The few errors the pro-
gram did detect produced only a "?" to indicate
a problem.36 Some UNIX utilities give no more
than "syntax error" to an immense variety of
problems in what are often complex and tedious
scripts.37

Chatty programs are tedious and it is an open
question as to how much a program should pro-
tect users from their own stupidity.38 What
might (I have my doubts) be appropriate in a
single-user situation (or perhaps the near ideal
conditions of Bell Labs) is totally inappropriate
in a university environment. When it may take
from several days to several weeks to get a dam-
aged file restored (if at all), using programs that
allow simple destruction of files is perhaps the
programming equivalent of riding a motorcycle
without a helmet. Similarly, when one wants to
concentrate on one's work rather than the pe-
culiarities of programming, it is more than a
little insulting to be told that an informative
statement of what a program expects is for the
"unsophisticated'". 39

As far as possible, bibliofile programs check
file permissions before processing begins, as
much to save false runs as to prevent file de-
struction. Several UNIX utilities that do not do
this will run, often at some expense, and then
abort at the final stage due to inappropriate
permissions. Not all files can be tested in ad-
vance, but those that can be are. A separate
command is required to overwrite an existing
file or it must be removed before any output is
generated.

bibliofile diagnostics echo the offending com-
mand in order to show "metacharacters" that

may have been changed by the "shell" and to
show spurious characters introduced by key-
board bounce. Partly because of the nested and
recursive possibilities of the UNIX shell, pro-
gram names are included in both diagnostics
and prompts, but there is a more mundane rea-
son for including the name of the program in
the prompt. Like many of those using these pro-
grams, I work in an environment subject to con-
stant interruption by students, colleagues, etc.
Since logout and login are time-consuming, I
usually stay logged in during short interrup-
tions but often forget what I was doing when
interrupted. Having a program prompt with its
name, as in

(ked)

or

(kord)

at least reminds me where I was.
Not all users might need the named prompt,

but plain English diagnostics are useful to all.
There is no excuse in any computer system,
especially UNIX, for anything else. At the very
least it is possible to have a table of standard
diagostics identified by a number. When an error
is encountered, the program in trouble calls a
pattern-finding routine (grep in UNIX) that
finds the number in the table of diagnostics and
lists the associated message. There should be
no market for guides (especially priced at $25
for 24 pages of text) to explain messages from
programs.40 Indeed, there is no good reason for
not building good diagnostics into a program
itself. Even for the most complex programs, a
full set of terse, plain English diagnostics is
unlikely to require more than 1 or 2 k of core,
and with a machine capable of addressing 128 k,
these can easily be included in the source code
itself. Even the very explicit messages in kform,
complete with an arrow pointing to the probable
mistake, are very simple to generate as the com-
mand-parsing process itself inherently supplies
an indication of where a problem occurs.41

bibliofile programs do not, however, contin-
ually inform the user of what is going on. Con-
ventional terminal screens are small enough

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

BIBLIOFILE: HUMANIZING UNIX 81

without having one or more lines taken up by
status information. Programs that give a blow-
by-blow description of what is happening may
well distract the user or obscure important in-
formation in a stream of trivia. kord is the only
program that always provides an execution re-
port, and it does so because sorting very large
files under heavy load conditions may require
so much time that the user becomes frustrated
and, thinking something is wrong, sends an in-
terrupt or break. Even in this case the informa-
tion given is no more than that needed to tell
the user the program is indeed alive and well.
The sequence is "<indexing>," "<sorting>," and
"<rebuilding>".

User Friendliness
In trying to make bibliofile into a system of
general utility, the author has studiously avoid-
ed one approach that is enjoying something of
a fad: menus and windows.42 Aside from the
complexity they add to programs, the greatest
objection that can be raised against the use of
menus and windows is the time their display
requires. Over a three-hundred-baud telephone
line, it takes a minimum of 65 seconds to draw
a full screen, and more if an elaborate display
with font changes is used.43 Moreover, this min-
imum is achieved only if the menu is an integral
part of the program. Then, one must read
through the menu and make a selection. In
many menu-driven systems, one menu leads to
another. It is very easy to spend more time
waiting for and reading menus than actually
working. Even with faster data lines, menus
soon grow tedious, especially if, as with many
programs, you cannot shut off or interrupt the
menu.

In lieu of menus, bibliofile offers command
summaries on request, on-line documentation,
and extensive error checking and feedback. At
the shell level, the user can get a summary of
commands for any bibliofile program by typing:

prog hint

A printed copy of this "hint," which is organized
like a "quick reference card," can be obtained
by:

prog nint Ilpr -N

From within a program the same "hint" is called
by typing a single "?" (question) mark. Fig. 11
is an example of one such "hint" taken from
krect, a bibliofile program used to correct spell-
ing errors.44

Figure 11.

krect [file names]

commands

? list commands

r/string replace displayed word by string (ksed)

s/string replace displayed word by string (ex)

x erase the previous command

u

c context search on word

p context search on word as pattern

Scontext search on word

(show non-printing)

mark word as ###word###

(for subsequent editing)

go begin processing text

q quit without further processing

Icmd execute cmd

In most programs these command summaries,
contained in a separate routine which is actually
compiled into each program, provide nearly in-
stantaneous response to a request for help, sub-
ject only to the limits of the transmission rate.45
Errors also cause the "hints" to be displayed.

The "hint" function makes it easy to keep at
least a portion of the documentation up to date.
Since the "hints" are compiled into the pro-
grams, only a single extra step is needed to
update them whenever the program itself is
changed.

The user can also examine the documentation
for any program by typing

prog help

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

82 EARL H. KINMONTH

and get printed copies of the documentation for
one or more programs by using a utility called
ksysdoc.

In writing the documentation, I have empha-
sized practical examples and tried to anticipate
common errors. Because I actually use these
programs in my own work and have close con-
tact with others using them, I can base my ex-
amples and anticipated mistakes on real-world
experience. With the documentation maintained
on-line, new examples, explanations, and "bug
notices" can be added quickly.

Examples are generated in several ways. First,
I try to provide one example to illustrate each
option by itself and in what seem to me to be
the most probable combinations. In developing
each program, I also include a phase where I
deliberately abuse the program, giving it bad
commands and absurd parameters. If the bad
command or absurd parameter is one that can
be caught, the program is modified to include
an appropriate diagnostic. If the case is ambig-
uous-what are absurd parameters to one may
not be to another-a warning is included in the
documentation about what to expect. Through
personal use of the programs, I discover short-
cuts or quirks, and if these seem to be of general
interest, they are included in the documenta-
tion. Feedback from users also contributes to
both the diagnostics and documentation. Users
are much more adept at discovering bugs than
are authors.

In part this approach to documentation is
common sense, but it is also in part a reaction
to the atrocious documentation that comes with
UNIX. Most program descriptions provide
either no examples or purely trivial ones. Be-
cause many of the "metacharacters" used by
pattern-finding programs and by system utili-
ties are also special to nroff and troff, it is not
unusual to have key elements missing from the
examples because some significant character
was stripped by troff when the documentation
was printed.46 There is enough start-up cost in-
volved in learning how to use any new program
without having to try to second-guess a type-
setter that eats text. By printing its documen-
tation through kroff, which uses fewer
"metacharacters" and has good provision for

getting around the few it does use, bibliofile
avoids this problem.47

Efficiency
All programs in the bibliofile system are written
in C.48 Inasmuch as the UNIX system itself is
written almost entirely in this language, it is
automatically the choice for serious work under
UNIX, for it allows direct entry into the
operating system. C is a medium-level struc-
tured language similar to PASCAL but without
the lacunae that make "standard" PASCAL
almost worthless as a serious language.49 As a
structured language (like PASCAL), it forces
one to think logically and discourages the
"spaghetti code" so common to FORTRAN and
BASIC.50

C provides many features useful for serious
programming, including recursive subroutines,
user-definable data types, a full set of bit-ma-
nipulation operators, and structures (devices)
for grouping variables in sets and subsets. More-
over, C produces very efficient and relatively
portable code.51 On the basis of many years of
experience in programming FORTRAN and
COBOL, I would suggest that C is the most
versatile language available for serious software
production.

In arguing that learning efficiency is at least
as important as execution efficiency, I do not
mean to imply that no attention has been given
to execution speed. Where C offers several alter-
native routes to the same end, the more efficient
construct has been used, provided the result is
readable.52 Overall programming structure has
been checked for efficiency by use of the UNIX
utility prof (profile), which provides statistics
on the number of times each routine is called
in a program and how much of the cumulative
time is associated with each routine. prof tells
which routines need improvement and which are
worth effort. A horribly inefficient routine that
is called only once and contributes only a few
percent to overall execution cost is not worth
rewriting. Running prof on bibliofile programs
has shown that sixty or seventy percent of all
time is accounted for by low-level system opera-
tions (not subject to programmer control) with
the remainder distributed widely over a large

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

BIBLIOFILE: HUMANIZING UNIX 83

number of my routines. Given programs of the
type described here, this is as one would expect.

One case that prof did point out was in kroff.
Originally, kroff called a routine that checked
for vowels followed by macrons, which were con-
verted into overstruck vowels (To^kyo^ becomes
T6ky6).53 Rewriting this function into in-line
code took ten percent off the running time of
the program by eliminating the overhead in-
volved in calling a subroutine for each and every
character. Cases of such clearly bad and easily
correctable structural errors have, however,
been very rare.

This is not to say that I write ultra-efficient
code. Presumably a professional programmer
could make changes that would raise efficiency.
Nevertheless, since the portion of program time
not accounted for by system input-output is rel-
atively small, even a one hundred percent im-
provement in all other routines would result in
improvements of only twenty-five percent or
less overall. The price for greater efficiency
would be code that is cryptic and harder to un-
derstand, particularly at a later date, and that
involves less error checking.54 This is a price
usually not worth paying.

Conclusion
bibliofile is hardly the "perfect" data base or
filing system. There are many aspects that
could be improved. A "screen" rather than a
"line" editor would add much to the convenience
of the system.55 There ought to be some provi-
sion for editing patterns in programs such as
krep and kord. For those who really want
something akin to an airline reservation system,
there should be some sort of efficient indexing
or hashing scheme. Nevertheless, bibliofile can,
I think, hold its own against commercial pro-
grams, even if one does not consider cost.56

NOTES

1. Bell has essentially made UNIX available for the cost of the tapes
containing the system. See David and Susan Fiedler, "Selecting a
Small UNIX System," UNIX Review 1:1 (June-July, 1983), p. 36.
2. Strictly speaking, dbminit is a set of very difficult to use routines
for managing a hashing-type data base. Not all distributions of
UNIX even have dbminit.

3. These include:
James Murphy, Rhetoric, An Encyclopedia of the History of
Rhetoric
Lynn Roller, Classics, Catalogue of Pottery Marks from Gordion
Susan Shimanoff, Rhetoric, A Dictionary of Terms in Discourse
Analysis
Special Collections Library, The Hal Higgins Agricultural
Collection
Library Associates, Bibliography of UC Wine Publications,
1868-1968
Michael Motley, Rhetoric, Study of Prejudicial Language
Mortimer Schwarz, Law, Catalogue of Presidential Action
Committees
Kevin Roddy, Medieval Studies, Bibliography of Medieval Culture
Laura Martinez, Graduate Division, Census of Graduate
Employment
Keith Young, Research Division, Faculty Profiles
Terry Weidner, Medicine, Specimen Collection Inventory
Eva Carroad, Primate Center, Secondary Bibliography
Ken Firestien, Library, Checklist of Appropriate Technology
Linda Bickham, Library, Serial Articles in Biological Science.

4. This might be more appropriately called a "tags" file to distin-
guish it from the notion of "keys" for indexing content.
5. Users are free to extend, modify, or replace this ".keys" to given
conformity with MARC or other "standards."
6. ked defaults to a 2048 buffer. This can be raised by a "$buffer=
nnnn" statement (in the ".keys"). If a given machine has enough
core, the maximum number of cards addressable by the ked may
be raised by a "$maxcards=nnnn" statement.
7. This aspect of UNIX is discussed in Brian W. Kernighan and Rob
Pike, The UNIX Programming Environment (Prentice-Hall, 1984),
p. 44. This simple file structure is one of the most important aspects
of the UNIX system. In effect, UNIX was an "integrated" system
a decade before "integration" became a buzz word in small system
software.
8. The clarity of ked records is in stark contrast to those of most
commercial or institutional data systems. For examples of such
schemes, see H. S. Heaps, Information Retrieval: Computational and
Theoretical Aspects (Academic Press, 1978), chap. 3.
9. For examples of the problems caused by more complex coding
schemes, see Kristina M. Brooks, "The Online Transfer of A
Pandora's Box," Database (February, 1982), pp. 18-21.
10. Some line-printer and terminal software does this automatically
but in arbitrary fashion. A simple bibliofile utility kfold does in-
tellligent line folding on the first blank after n (default 64) characters.
11. Very long lines are unacceptable to some utilities. Again, kfold
will make the records acceptable.
12. At UCD the bankruptcy of an account usually requires moving
files to an account with money. If the files were indexed with specific
disk addresses, address tables would have to be rebuilt every time
a file was moved.
13. Fixed format systems are derived from the 80 column "IBM"
or Hollerith card. This was in turn derived from the control cards
of the Jacquard loom invented in 1745. In this sense, any data base
system using fixed length records may be regarded as using eigh-
teenth century technology.
14. An alternative approach might use a byte-stream with numeric
tags (keys) both marking off fields and supplying an indication of
what follows. This could be done by using one eight-bit byte with
the high bit on to distinguish it from the ascii character set (which
does not use the high bit). While this would limit the system to 127
data fields, it would produce some savings on overall file size and
speed of input-output.

Assuming a file with an average of ten fields per record each
averaging twenty characters, the savings with a numeric scheme
would be 67 percent on keys (tags) relative to a two character (plus
one separator) alphanumeric system. Because the keys (tags) are only
a small percentage of each record, a 67 percent savings there
translates into only a 16 percent savings on each record. Further-

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

84 EARL H. KINMONTH

more, this savings declines as the average field size increases becom-
ing 13 percent for 40 character records and 9 percent for 80 character
records.

Except for linear (sequential) processing, the space savings of a
numerical scheme does not translate into equivalent time savings.
Random access reading and writing has a sunk cost for each seek
that is independent of the number of characters transferred.

The small gain in efficiency coming from numeric coding requires
giving up the self-documenting character of bibliofile records. It can
produce bizarre output with simple dump routines because the
numeric codes are non-ascii. High bit numeric coding also requires
a translation filter for use with other UNIX utilities.

Similarly, storing numerical data in binary form would sometimes
produce a savings in file size. (12345 requires 5 bytes in ascii, two
in binary.) But, translation would be required whenever the file was
to be handled by UNIX utilities.
15. By "bleeding" I mean the case in a fixed-length system where
excessive length entries are not detected and the excess from one
field "bleeds" into the next. The popular micro-computer program
dBASE is a good example of bleeding.
16. Pattern finding (krep) does not require reference to the keys as
such.
17. Many of those using these programs at UCD begin by using
public access terminals. These are used and abused by students from
bonehead FORTRAN classes and by game players.

If required, leading and trailing blanks can be forced through by
the standard UNIX convention of quoting with the escape (/)
character.
18. Some operating systems use the term "chaining" to describe this
type of mechanism.
19. Even with the UNIX system, one has this problem. For example
the manual for join notes that the conventions for the overlapping
programs join, sort, and uniq, are "wildly incongruous." "join," UCD
UNIX Programmer's Manual (1982).
20. Due to the need to buffer output for efficiency, it is possible to
lose the very last record edited or entered.
21. ex and vi developed at UCB have these features and more. ked
was, in a loose sense, patterned after ex, but the code is the author's
own plus some inspiration from Brian W. Kernighan, Software Tools
in PASCAL (Addison-Wesley Publishing Company, 1981), chap. 6.

I have found that even some people holding the title of "systems
programmer" do not know how to implement an "undo" function
or think it too difficult to "reverse" a command. No reversing is done.
One merely keeps two alternating copies of the buffer's address table,
updating this after each change.Although uncommon in editors, this
extremely useful function involves only a few lines of code.
22. Without specification ked supplies address tables for 2048
records, each 2048 characters (4.2 million characters total). Some
users have doubled both parameters for a directly addressable file
of 16.8 million characters.
23. In practice the actual file will not be as large as simple multiplica-
tion of these factors would imply. To edit a record rather than simply
enter it, there must be a free area equal to the longest single line
in the record. Thus if the card buffer is 2048 and the longest single
line in any record is 512 charcters, the effective usable record size is
2048 - 512=1536 and the effective addressable file size is 1536 * 2048
= 3.1 million characters. This is still far more than the usual UNIX
editors can handle.

The failure of UNIX utilities to make effective use of other at-
tractive features of the operating system is discussed below under
"interaction."

Other programs in the system are, for all practicalpurposes, totally
open ended.
24. Readers unfamiliar with UNIX may be confused by its capability
to use whole programs (sort in this case) much as one would use func-
tions from within a higher level language. sort is in fact an indepen-
dent program that is initiated by kord which also collects its ouput.

This aspect of the UNIX system is discussed in S. R. Bourne, The
UNIX System (Addison-Wesley, 1983), chap. 4 and in Kernighan
and Pike, UNIX Programming Environment, chaps. 3, 4, and 5.
25. The program also has miserable documentation, but that is true
of most UNIX programs.

A program similar to the UNIX sort is described in Kernighan,
Software, chap. 4
26. See James Martin, Computer Data-Base Organization (Prentice
Hall, Inc., 1975), p. 433.
27. sed (the UNIX stream editor) would be more efficient but ex or
ed will overwrite its input saving the novice from worrying about
the creation and deletion of a scratch file.

28. There are a wide variety of scripts that would do the same thing.
The example uses an attribute of the "Bourne" shell called a "here"
text. For a description of these, see S.R. Bourne, An Introduction
to the UNIX Shell (Bell Laboratories, 1978), pp. 7-8. The actual
editor script is a straightforward substitution, familiar to even the
most novice user of UNIX. The role of the "%" is explained below.
29. Following the fairly standard practice of UNIX software, I have
used '%' as a token to stand for the current file name. This '%' is
not the same as the '%' of the script. There the '%' symbol was used
because it was very unlikely that this would appear in any book or
article title in the humanities!
30. Most of the items in this bibliograpy are from Kate L. Turabian,
A Manual for Writers of Term Papers, Theses, and Dissertations.
(University of Chicago, 1973). It is used primarily to test style
sheets.
31. These figures were generated by kstix, a utility intended to give
an indication of appropriate buffer sizes and costs of storage. The
cost has been omitted here because it reflects the billing peculiar
to UCD.
32. The bibliofile record structure does not preclude a more complex
and possibly faster indexing or relational scheme.
33. For a description of these two utilities see Lee E. McMahon,
SED - a Non-interactive Text Editor (Bell Laboratories, 1978) and
Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger, Awk -
A Pattern Scanning and Processing Language (Bell Laboratories,
1978).
34. Here again, the basic principle is to build on conventions the
user will already be familiar with or will have to learn if he or she
wants to use the UNIX system beyond the most elementary level.
I frankly consider the nroff and troff instruction language to be
among the worst I have encountered in a decade of programming.
The dilemma presented is either to start from scratch and develop
a language I consider appropriate thereby giving the user an entirely
new set of trivia to contend with or to build on something the regular
user of UNIX already knows or will have to know in the future and
try to make it a bit less painful. I have opted for the latter approach.
For examples of the nroffand troff instruction language, see Brian
W. Kernighan, A TROFF Tutorial (Bell Laboratories, 1980).
35. UC Berkeley charges only for connect time. A cpu-intensive pro-
gram such as awk is economically tolerable in this case, though even
with "free cpu time," the overall slowness (real time) of the program
makes kform that much more attractive. UCD charges for both cpu
and connect time.

awk also has several bugs that show up frequently in the applica-
tions to which bibliofile is applied. The formatted print statement
mishandles strings containing '%' and during long runs awk bombs
and dumps core for no apparent reason. This is probably due to an
error in the memory allocation scheme which gradually allows
"garbage" (to use LISP terminology) to accumulate until the pro-
gram runs out of core.
36. Some distributions of UNIX still contain this version of ed!
37. The UNIX utility expr has my vote as the worst in the system,
although I could make a strong case for sort and find as well.
38. See Kernighan, Software, p. 191.
39. Eric Shienbrood, "more," UCD UNIX Progammer's Manual
(1982). This program is part of the 2-BSD UNIX system from
Berkeley.
40. Henry McGilton and Rachel Morgan, Responses from UNIX
Commands (International Technical Seminars).
41. kform uses "recursive descent," a common compiler technique,
to generate its code. All the variables required by the error-pointer
routine are generated as part of the parsing process. The error-
pointer routine itself is about twenty lines of code, much of which
is concerned with handling terminals that do not automatically fold
along lines.
42. In some extreme cases these are combined with "mice" (a kind
of pointer) and "icons" (graphic representations of menu items).
Both of these are more marketing gimmicks rather than serious aids
to computing. Aside from questions about reliability of the mice,
their use presumes a clean desk top and requires removing your
hands from the keyboard. The icons (a "trash can" indicates file
removal, a "scratch pad" indicates a scratch file, etc. in Apple's Lisa)
are simply absurd where not actually insulting. For a description
of Lisa, see Gregg Williams, "The Lisa Computer System," Byte

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

BIBLIOFILE: HUMANIZING UNIX 85

8:4 (April, 1983), pp. 33-50. For doubts about the garbage and vermin
approach to user interaction, see "Letters," Byte 8:2 (February,
1983), pp. 16-27.

It would be comforting to be able to say that Apple's approach
represents something of an extreme. Unfortunately, it does not.
WHATSIT, a data base system for microcomputers, engages in
"pidgin English" dialogues with users. (E. G. Brooner, Micro-
computer Data-Base Management (Howard W. Sams & Co., 1982),
p. 69. One can only hope that as programming matures as a disci-
pline, such approaches will die natural and deserved deaths.
43. Another consideration is that bibliofile programs must work
with several dozen different terminal types.
44. krect uses the output from the UNIX utility spell to make global
changes on nroff/troff and bibliofile files.
45. Having the "hints" in a separate file would slow response time.
Even the most verbose "hints" take up no more than 1 or 2 k of core.
46. Examples include lorder and tar in UCD UNIX Programmer's
Manual (1982). This also appears to be the problem with some of
the examples in the documentation for M4. See Brian W. Kernighan
and Dennis M. Ritchie, The M4 Macro Processor (Bell Laboratories).
I do not know if this is peculiar to the local editions or not.
47. kroff is the bibliofile equivalent to nroff and kroff. It accepts
a substantial subset of nroff commands but runs five to eight times
faster than nroff while putting a much smaller demand on system
resources. It can also be operated interactively to preview text and
tables. This makes it substantially more convenient than the "batch
style" nroff.
48. The standard work on C is Brian W. Kernighan and Dennis M.
Ritchie, The C Programming Language (Prentice-Hall, 1978). See
also the special issue "The C Language," Byte 8:8 (August, 1983),
pp. 46-285. Individual articles in this issue provide additional
support for many of the "philosophical" points I have tried to
make here.
49. Standard PASCAL has several major flaws such as no method
for early exit from a loop and an unbelievably tedious mechanism
for array initialization. Some of these problems are noted in Kern-
ighan, Software, pp. 27-29.
50. C does have a "goto" that can be used for "rat's nest" program-
ming. There are no goto statements in bibliofile programs.
51. The problems that have appeared in moving bibliofile programs
to other systems, principally those at the University of California,
Berkeley, include:

(a) bibliofile expects the "Bourne shell" and some system calls
must be changed for other shells. These calls are defined in a single
header file to make it simple to change all programs at once.
(b) Some programs such as kord and kroff will have lower record-
size limits if they are compiled on machines (other than the PDP
11/70 series) that do not support independent data and instruc-
tion areas. On Digital Equipment Corporation VAX machines, the
core-limit essentially disappears.
(c) Some C compilers may have trouble with my mixed use of
pointers and integers. The UNIX utility lint will identify these
cases which are easily correctable by installing "casts" in the
source code.

Compatibility considerations are discussed in Kernighan and
Ritchie, C, pp. 211-213 and in S. C. Johnson, Lint, a C Program
Checker (Bell Laboratories).

52. For example, C allows both FORTRAN-style array indexing and
"indirection." The two examples below both copy an array:
for (i=0;b[i] != NULL; i++) a[i] = b[i];
while (*b != NULL) *a++ = *b++;
The second is substantially more efficient than the first and not
notably harder to read.
53. nroff requires T *^oky *^o to accomplish the same thing.
54. Slower speed for my routines results primarily from two sources.
First, I use more discrete routines to improve readability. There is
more overhead in calling a routine than in having in-line code as the
kroff example demonstrates. Second, I have included explicit boun-
dary checking on arrays to prevent silent truncation or contamina-
tion of data from unexpected input.
55. The UCD Computer Center has developed a data entry program
(dbenter) that works with bibliofile records and provides screen
editing. Due to bugs in curses, the UC-Berkeley terminal driving
package, this program cannot work with records that require more
than one terminal image to display. It also lacks the recovery and
undo provisions of ked.
56. bibliofile source codes, PDP 11/70 executable elements, and
documentation are available to non-commercial users on a zero cost
zero support basis. (The same as for UNIX itself!) To get a copy,
submit a standard 2400 ft. tape to Earl H. Kinmonth, History
Department, University of California, Davis, Davis, California,
95616. Tapes are normally supplied in UNIX "tar" format. Turn
around is a function of the academic year and other demands on
my time.

This content downloaded from 129.67.174.146 on Tue, 17 Feb 2015 10:19:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 71
	p. 72
	p. 73
	p. 74
	p. 75
	p. 76
	p. 77
	p. 78
	p. 79
	p. 80
	p. 81
	p. 82
	p. 83
	p. 84
	p. 85

	Issue Table of Contents
	Computers and the Humanities, Vol. 18, No. 2 (Apr. - Jun., 1984), pp. 71-137
	Front Matter
	Bibliofile: Humanizing the UNIX System [pp. 71-85]
	Teaching Hebrew with the Aid of Computers: The Illinois Program [pp. 87-99]
	The Individualized History Survey Course and the Computer [pp. 101-106]
	La Recherche française par ordinateur en langue et littérature: A Colloquium Report [pp. 107-108]
	Book Reviews
	Review: untitled [pp. 109-120]
	Review: untitled [pp. 121-122]
	Review: untitled [pp. 122-123]
	Review: untitled [pp. 123-125]
	Review: untitled [pp. 125-127]
	Review: untitled [pp. 127-128]
	Review: untitled [pp. 128-129]
	Review: untitled [pp. 129-130]
	Review: untitled [pp. 130-132]
	Review: untitled [pp. 132-133]
	Review: untitled [pp. 133-135]
	Review: untitled [pp. 136-137]
	Review: untitled [p. 137-137]

	Back Matter

